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CONVEXITY ACCORDING TO THE GEOMETRIC MEAN
CONSTANTIN P. NICULESCU

(communicated by Zsakes)

Abstract. We develop a parallel theory to the classical theory of convex functions, based on a
change of variable formula, by replacing the arithmetic mean by the geometric one. It is shown
that many interesting functions such as exp, sinh, cosh, sec, csc, arcsin, ' etc illustrate the
multiplicative version of convexity when restricted to appropriate subintervals of (0, oc). Asa
consequence, we are not only able to improve on a number of classical elementary inequalities
but also to discover new ones.

1. Introduction

The usua definition of a convex function (of one real variable) depends on the
structureof R asan ordered vector space. As R isactually an orderedfield, it isnatural
to ask what happenswhen additionisreplaced by multiplication and the arithmetic mean
is replaced by the geometric mean. A moment’s reflection reveals an entire new world
of beautiful inequalities, involving abroad range of functionsfrom the el ementary ones,
such assin, cos, exp, to the special ones, suchas I', Psi, L (the Lobacevski’sfunction),
Si (theintegral sine) etc.

Depending on which type of mean, arithmetic (A), or geometric (G), we consider
respectively on the domain and the codomain of definition, we shall encounter one of
the following four classes of functions:

AA — convex functionghe usual convex functions
AG — convex functions

GA — convex functions

GG — convex functions.

It isworth noticing that while (A) makes no restriction about theinterval | where
it applies(itissobecause x,y € 1, A € [0, 1] implies (1—A)x+ Ay € 1), theuse of
(G) forcesusto restrict to the subintervals J of (0, oo) in order to assure that

X, yeJ A e[01=x"y el
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To be more specific, the AG— convex functiong usually known as log — convex
functions) arethose functions f : | — (0, co) for which

x,y€landA €[0,1] = f((1-A)x+Ay) < F(x)*Af(y)?, (AG)

i.e., for which log f isconvex.
The GG- convex functiongcalled in what follows multiplicatively convex func-
tions) arethose functions f : | — J (acting on subintervalsof (0, co) ) such that

x,y€landA € [0, 1] = f(x**y*) < f(x)X A f(y)*. (GG)
Due to the following form of the AM — GM Inequality,
abe (0,00), A €[0,1] =a b <(1-A)a+Ab, (%)

every log— convex function is also convex. The most notable example of such a
functionis Euler’'sgamma function

r(x) :f t“~letdt, x> 0.
0

Infact,

d? > 1
— logl(x) = forx > 0.
e 9T ngo (x+n)?

See [15]. Asnoticed by H. Bohr and J. Mollerup [2], [1], the gammafunction is
the only function f : (0, co) — (0, co) with the following three properties:

(F1) f islog— convex;
(Fr2) f(x+1) =xf(x) forevery x>0;
(F3) f(n+1)=n! forevery ne N.

The class of all GA— convexfunctionsis constituted by all functions f : | — R
(defined on subintervals of (0, oo) ) for which

x,y€landA €[0,1] = f(x*y") < (21— ) f(x) +Af(y). (GA)

In the context of twice differentiablefunctions f : | — R, GA-— convexity means
x2f"" +xf’ > 0, sothat all twice differentiable nondecreasing convex functions are al'so
GA-— convex. Notice that the inequality (x) aboveis of this nature.

Theaim of this paper isto investigatethe class of multiplicatively convex functions
as asource of inequalities. We shall develop a parallel to the classical theory of convex
functions based on the following remark, which relates the two classes of functions:
Suppose that | is a subinterval ¢0, o) and f: | — (0, c0) is a multiplicatively
convex function. Then

F=logofoexp:log(l) — R
is a convex function. Conversely, if J is an intery&br which exp(J) is a subinterval
of (0,00)) and F:J — R is a convex function, then

f =expoFolog: exp(J) — (0, c0)
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is a convex function.

Equivalently, f is multiplicatively convex if, and only if, logf(x) is a convex
function of logx. See Lemma 2.1 below. Modulo this characterization, the class of all
multiplicatively convex functions was first considered by P. Montel [10], in a beautiful
paper discussing theanal ogues of the notion of convex functionin n variables. However,
the roots of the research in this area can be traced |ong before him. Let us mention two
such results here:

HADAMARD'S THREE CIRCLES THEOREM. Let f be an analytical function in the
annulus a< |z| < b. ThenlogM(r) is a convex function dfogr, where
M(r) = sup |f(2)]-

l7=r

G. H. HARDY’S MEAN VALUE THEOREM. Let f be an analytical function in the
annulus a< |z] < b andlet pe [1, 0c0). ThenlogM(r) is a convex function oogr,

where
1 21 1/p
— | = i0\|p
Mp(r) (271/0 |f(re'”)| d6> .

As lim, . oo Mn(r) = M(r), Hardy’s aforementioned result implies Hadamard's.
Asiswell known, Hadamard's result is instrumental in deriving the celebrating Riesz-
Thorin Interpolation Theorem (see [5]).

Books like those of Hardy, Littlewood and Polya[5] and A. W. Robertsand D. E.
Varberg [12] make some peripheric referencesto the functions f for which log f(x) is
a convex function of logx. Nowadays, the subject of multiplicative convexity seems
to be even forgotten, which is a pity because of its richness. What we try to do in this
paper is not only to call the attention to the beautiful zoo of inequalities falling in the
realm of multiplicative convexity, but also to provethat many classical inequalitiessuch
asthe AM — GM Inequality can benefit of abetter understanding viathe multiplicative
approach of convexity.

2. Generalitieson multiplicatively convex functions

The class of multiplicatively convex functions can be easily described as being
constituted by those functions f (acting on subintervalsof (0, co) ) such that log f (x)
is aconvex function of logx :

LEmMMA 2.1. Supposethat | is asubinterval (@, co). Afunction f: 1 — (0, o)
is multiplicatively convex if, and only if,

1 logxy logf(xi)
1 logx, logf(xz)
1 logxsz logf(xs)

>0

for every % < X2 < xz in I; equivalently, if and only if,

f (Xl)logX3f (Xz)logxl f (X3)|ngz > f (Xl)logxz f (XZ)Iogm f (X3)|09x1
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forevery x <xx < xzinI.

Proof. That followsdirectly from the definition of multiplicative convexity, taking
logarithms and noticing that any point between x; and xs is of the form x;*x3 , for
some A € (0,1). O

COROLLARY 2.2. Every multiplicatively convex function:fl — (0, oo) has finite
lateral derivatives at each interior point of |. Moreover, the set of all points where f
is not differentiable is at most countable.

An example of a multiplicatively convex function which is not differentiable at

countably many pointsis
= |logx — n|
exp (Z — |-

n=0
By Corollary 2.2, every multiplicatively convex function is continuous in the
interior of its domain of definition. Under the presence of continuity, the multiplicative
convexity can be restated in terms of geometric mean:

THEOREM 2.3. Suppose that | is a subinterval ¢8, co). A continuous function
f:1 — [0, 00) is multiplicatively convex if, and only if,

X,y €l = f(yxy) < VIx)f(y).

Proof. The necessity is clear. The sufficiency part follows from the connection
between the multiplicative convexity and the usual convexity (asnoticed in the Introduc-
tion) and the well known fact that mid-convexity (i.e., Jensen convexity) is equivalent
to convexity under the presence of continuity. See[5]. O

Theorem 2.3 above reveals the essence of multiplicative convexity as being the
convexity according to the geometric meamfact, under the presence of continuity,
the multiplicatively convex functions are precisely those functions f : | — [0, co) for
which

X1, ooy Xn € 1 = F(IX1Xn) < V/F(X1)...f(Xn).

In this respect, it is natural to call a function f : 1 — (0, c0) multiplicatively
concavef 1/f ismultiplicatively convex and multiplicatively affingf f isof theform
Cx® forsome C > 0 andsome a € R.

A refinement of the notion of multiplicative convexity isthat of strict multiplicative
convexitywhich in the context of continuity will mean

f (X1 Xn) < V/F(X1)...F(Xn)

unless x; = ... = X,. Clearly, our remark concerning the connection between the mul-
tiplicatively convex functions and the usual convex functionshasa”strict” counterpart.

A large class of strictly multiplicatively convex functions, is indicated by the
following result, which developed from [5], Theorem 177, page 125:

ProPosSITION 2.4. Every polynomial Px) with non-negative coefficients is a mul-
tiplicatively convex function ori0, co). More generally, every real analytic function
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f(x) = > o=, X" with non-negative coefficients is a multiplicatively convex function
on (0, R), where R denotes the radius of convergence

Moreover, except for the case of functions"Cywith C > 0 and ne€ N), the
above examples are strictly multiplicatively convex functions.

Examples of such real analytic functions are:
exp, sinh, cosh  on (0, oo)
1
tan, sec, csc, o cotx on (0, 17/2)

arcsin  on (0, 1]
1+X
1-—
Seethetable of seriesof |. S. Gradshteyn and |. M. Ryzhik [4].

Proof. By continuity, it sufficesto prove only thefirst assertion. For, suppose that
P(x) = Er':‘: o CnX". According to Theorem 2.3, we have to prove that

X,y > 0= (P(yXy))> < P(X)P(y).

—log(1 - x), on (0, 1).

equivaently,
X,y > 0= (P(xy))* < P()P(Y?).
Or, the latter is an easy consequence of the Cauchy-Schwarz Inequality. O

REMARK 2.1. i) If afunction f ismultiplicatively convex, thensois x? f#(x) ( for
adl a e R anddl g > 0).

i) If f iscontinuous, and one of the functions f(x)* and f(e'/'%9%) is multi-
plicatively convex, then so is the other.

REMARK 2.2. S. Saks [13] noticed that for a continuousfunction f : | — (0, co),
logf(x) is a convex function of logx if, and only if, for every a > 0 and every
compact subinterval J of |, x?f(x) should attain its maximumin J at one of the ends
of J.

APPLICATIONS. Proposition 2.4isthesource of many interestinginequalities. Here
are several elementary examples, obtained via Theorem 2.3:
a) (SeeD. Mihet [9]). If P is a polynomial with non-negative coefficients then

P(x1)...P(Xn) > (P(¥/X1...Xn))"  for every Xy, ..., Xn > 0.

Thisinequality extendsthe classical inequality of Huygens (which correspondsto
the case where P(x) = 1 + x) and complements a remark made by C. H. Kimberling
[7] to Chebyshev's Inequality, namely,

(P(1)"P(X1...%n) = P(X1)...P(Xn)

if all Xy are eitherin|0, 1] orin [1, co).



160 CONSTANTIN P. NICULESCU

A similar conclusion is valid for every real analytic function asin Proposition 2.4
above.

b) The AM — GM Ineguadlity is an easy consequence of the strict multiplicative
convexity of € on [0, co). A strengthened version of thiswill be presented in Section
5 below.

1 — L
c) Because % isstrictly multiplicatively convex on (0O, 1),

D1+ % 1+ (T x)¥"
11 g (1— (%07

n
) for every xq, ..., Xn € [0, 1)

unless x; = ... = Xn.
d) Because arcsin isastrictly multiplicatively convex functionon (0, 1], in any
triangle (excepts for the equilateral ones) the following inequality

_A_B_.C 13 3
snzsinzsno < (sm(é \/ABC)>
holds. That improveson awell known fact namely,

sinésingsing < 1

22 2 8

unless A = B = C (whichisaconsequenceof thestrict log — concavity of thefunction
sin). Inasimilar way one can argue that
3

cosgcosgcos% < (sin(% Y(m—A) (m-B)(m-C) ))

unless A=B=_C.
e) As tan isastrictly multiplicatively convex functionon (0, rt/2), inany triangle
we have 5
A B C 1s
tanE tanE tanE > (tan(é \/ABC)>
unless A=B=_C.

The next example provides an application of Proposition 2.4 viaLemma2.1:
fylif 0O<a<b<c(or0O<b<c<a or0<c<a<hb), then
P(a)loch(b)logaP(C)logb > P(a)logbp(b)loch(C)loga

for every polynomial P with non-negative coefficients and positive degree (and, more
generally, for every strictly multiplicatively convex function). That complements the
conclusion of the standard rearrangement inequalities (cf. [3], page 167): If 0 < a <
b<c,and°P > 0, then

logc logb loga __ ; logo(a) log o(b) log a(c)
P(a)'®°P(b)'*9"P(c) = |r;f P(a) P(b) P(c)
P(a)logap(b)log bp(c)logc = sup P(a)log o(a)P(b)log a(b) P(C)IOg a(c)

o

where o runsthe set of al permutationsof {a, b, c}.
Theintegral characterization of multiplicatively convex functionsis another source
of inequalities. We |eave the (straightforward) details to the interested reader.
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3. Theanalogue of Popoviciu'sInequality

The technique of majorization, which dominates the classical study of convex
functions, can be easily adapted in the context of multiplicatively convex functions
via the correspondence between the two classes of functions (as mentioned in the
Introduction). Weshall restrict hereto the multiplicativeanal ogue of afamousinequality
dueto Hardy, Littlewood and Polya[5]:

PrRoOPOSITION 3.1. Supposethat x> X, > ... > Xpand y >y, > ... > Yy, are
two families of numbers in a subinterval | @, co) such that

X1 2 Y1
X1X2 = Yiy2

Vv

X1X2... Xpn—1

WV

Yi1y2---Yn—1

X1X2...Xn Y1Y2-.-Yn.

Then
F(x)f (%2).w.F(%n) > F(yD)f(¥2)-..F (yn)
for every multiplicatively convex function:f — (0, o).

A result due to H. Weyl [14] (see aso [8], p. 231) gives us the basic example
of a pair of sequences satisfying the hypothesis of Proposition 3.1: Given any matrix
A € My(C) having the eigenvalues,, ..., A, and the singular values;s..., s, they
can be rearranged such that

Ml > ezl s>
m n
H)\k :HSk.
k=1 k= k=1

Recall that the singular valuesf A are precisely the eigenvalues of its modulus,
|A| = (A*A)Y/2. The spectral mapping theorem assures that s¢ = |Ax| when A is self-
adjoint. One could suppose that for an arbitrary matrix, |Ay| < sc for al k. However,
thisis not true. A counter exampleis given by the matrix

01

40
whoseeigenvaluesare A; = 2 > A, = —2 andthesingularvaluesares; =4 > s, = 1.
Asnoticed A. Horn [6] (seealso [8], p. 233), theconverse of Weyl!’saforementioned
result is also true, i.e., al the families of numbers which fulfil the hypotheses of

Proposition 3.1 come that way.
According to the above discussion, the following result holds:

n

m
< Hsk fork=1,..,n—1 and
K—1

Ak
1

ProPOSITION 3.2. Let Ae M,(C) be any matrix having the eigenvalugs, ..., A,
and the singular values;s..., s, listed suchthaiA:| > ... > [Apj and § > ... > &,

Then .
II fs) > T faa

k=1 k=1
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for every multiplicatively convex function f which is continuoug o).
We shall give another application of Proposition 3.1, which seems to be new even
for polynomials with non-negative coefficients:

THEOREM 3.3. (The multiplicative analogue of Popoviciu's Inequality [11]) . Sup-
pose that f: | — (0, c0) is a multiplicatively convex function. Then

) £(y) £(2) £ (§xy2) > 12 (vxy) 12 (Vy2) 12 (V)

for every xy, z € I. Moreover, for the strictly multiplicatively convex functions the
equality occurs only when x y = z

Proof. Without loss of generality we may assumethat x >y > z. Then

VXY 2 VZx>\/yz and X > IXyz> z

If x> IXyz>y > z the desired conclusion follows from Proposition 3.1
applied to

X1 = X, Xo=Xz=Xa=IXyZ Xs=Y, Xe=2
Y1 = Y2=VXY, Y3=VYa=+XZ Y5=Y6=1/YZ

whileinthecase x >y > 3IXyz> z we haveto consider
X1 = X Xe=Y, X3=Xg=Xs= IXYZ Xe=2

Yi = Yoa=XY, Ya=Ya=+VXZ Y5=Y6=+/YZ. O

According to Theorem 3.3 (applied to f(x) = €*), for every x, y, z> 0 we have

X+y+z

2
—g T Ixyz> 3 (VXY + VYZ+ VZX)
unlessx = y = z

Other homogeneous inequalities can be obtained by extending Proposition 3.3 to
longer sequences and/or to more general convex combinations.

4. Multiplicative convexity of special functions

We start this section by recalling the following resullt:

ProposITION 4.1. (P. Montel [10]) Let f : [0,a) — [0, c0) be a continuous
function, which is multiplicatively convex d@, a) . Then

F(x) = /0 f(t) dt

is also continuous o0, a) and multiplicatively convex o(0, a) .



CONVEXITY ACCORDING TO THE GEOMETRIC MEAN 163

Proof. Montel’s original argument was based on the fact that under the presence
of continuity, f ismultiplicatively convex if, and only if,

2 (x) < kI £ (kx) + k=9 f(x/K),

for every x € | and every k > 0 such that kx and x/k both belongto I.
Actually, due to the continuity of F, it sufficesto show that

(F(vX9))* < F(x) F(y) for every x,y € [0, a),
which is a consequence of the corresponding inequality at the level of integral sums,

D (D) <[]S0

i.e., of

S 1)) <[

To see that the latter inequality holds, notice that

()] < [ (] [ ()]

and then apply the Cauchy-Schwarz Inequality. O

PG

As tan is continuous on [0, 1/2) and multiplicatively convex on (0, 11/2), a
repeated application of Proposition 4.1 shows us that the Lobacevski’s function,

X
L(x) = —/ logcost dt
0

is multiplicatively convex on (0, /2).
Starting with Snt and then switching to S‘”t , Which is multiplicatively concave,
asimilar argument leads us to the fact that the mtegral sine,

Si(x) = / SNt g
o ¢t
is multiplicatively concaveon (0, 11/2).
Another striking exampleis the following:

PrROPOSITION 4.2. T is a strictly multiplicatively convex function dd, co).

Proof. Infact, logl(1+ x) isstrictly convex and increasing on (1, o0). Or, an
increasing strictly convex function of a strictly convex function is strictly convex too.
So, F(x) =logl (1 + &) isstrictly convex on (0, oo) and thus

M(1+x) = o9
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is strictly multiplicatively convex on [1, co). As I'(1+ x) = xI'(x), we conclude that
I itself is strictly multiplicatively convex on [1, 00). O

According to Proposition 4.2,
F3( IXy2) <T(X)F(y)T(z) foreveryx,y,z>1

except thecasewhere x =y = z.
On the other hand, by Theorem 3.3, we infer that

F)T(Y)F(2) T3 (xy2) > M2 (VXy) M2 (VY2 2 (VZX)
for every x, y, z > 1; theequality occursonly for x =y = z
Probably, thelast two inequalitieswork inthereversed formwhen x, y, z € (0, 1],
but at the moment we are unable to prove that.
Another application of Proposition4.2isthefact that thefunction 21 is strictly
multiplicatively convex or[1, co). In fact, it suffices to recall the Gauss-Legendre
duplication formula

Fr(2x+1)  2%Tr(x+1/2)
Frx+1) NG ’

In order to present further inequalitiesinvolving the gammafunction we shall need
the following criteria of multiplicative convexity for differentiable functions:

ProPosITION 4.3. Let f: 1 — (0, 00) be a differentiable function defined on a
subinterval of(0, co) . Then the following assertions are equivalent:

i) f is multiplicatively convex
i) The function*{ > is nondecreasing
i) f verifies the inequality

m > (§>y-f’(y)/f(w forevery xyel
fly) ~ '

If moreover f is twice differentiable, then f is multiplicatively convex if, and only

X[f(x)f"(x) — f'2(x)] + f(x)f'(x) > 0 forevery x> 0.

The corresponding variants for the strictly multiplicatively convex functions also
work.

Proof. Infact, accordingtoaremark inthelntroduction,afunction f : I — (0, 00)
is multiplicatively convex if, and only if, the function F : log(l) — R, F(x) =
log f (€"), isconvex. Takinginto account that the differentiability ispreserved under the
abovecorrespondence, the statement to be provedisjust atransl ation of theusual criteria
of convexity (as knownin the differentiability framework) into criteria of multiplicative
convexity. O

Directly related to the gammafunction is the psi function,
r(x)

P () = g 1007 (9 =

0
ax X >
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also known as the digamma function. It satisfies the functional equation ¢(x + 1) =
¢(x) + % and can be also be represented as

1 ix—1
t -1

Psix):—y—/ dt,

( o 1-t

where y = . 57722 is Euler’'s constant. See [4].
By combining Propositions 4.2 and 4.3 above, we obtain the inequality

r(x) x\ YW .
) > <y> forevery x,y>1 (Psi)
aswell asthefact that xPsi (x) isincreasing for x > 1.

Thelatter inequality can be used to estimate I from below on [1, 2] . Theinterest
comes from the fact that I is convex and attains its global minimum in that interval
because (1) = '(2); more precisely, the minimum is attained near 1.46. Taking
y=1andtheny =3/2 in (Psi), we get

1 oy \ 3/2(2-y-2In2)
(x) > max {x‘V, Eﬁ <§> } forevery x € [1, 2].

5. An estimate of the AM-GM Inequality

Suppose that | is a subinterval of (0,00) andthat f : | — (0, 00) isatwice
differentiable function. We are interested to determine for what values a € R the
function

B(x) = f(x) - X\~ /2 loox
is multiplicatively convex on |, equivalently, for what values a € R the function

ax
2 b
is convex on log(l). By using the fact that the convexity of a twice differentiable

function @ is equivaent to ®” > 0, we get a quick answer to the aforementioned
problem:

®(x) =logp(€’) = logf(e*) —

a <A,
where
2
Af) = Xeilr;g“) e logf(e") =
o XREF0 = (F1(x)%) + xF(x) f/(x)
= inf .
x € log(l) f(x)2

By considering also

d2
B(f)= sup —— logf(€e),
()= sp 5 lo9f(e)
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we arrive at the following result: Under the above hypotheses,
/\(f) n 1/n n 1/n
2
exp <W Zj<k (logxj — logxi) ) < (kl_ll f(Xk)> /f <k1—[1 Xk>

B(f) 2
< exp <W >, - (10g% — logx) )

for every %, ..., Xp € 1.

Particularly, for f(x) = €, x € [A,B] (where 0 < A< B), wehave A(f) = A
and B(f) = B and we are led to the following improvement upon the AM — GM
Inequality:

THEOREM 5.1. Suppose thad < A < B. Then

1/n
A ) 1 f
o Zj<k (logx; —logx)* < = > x— <k1_[1 xk>

B 2
< 0 ZKK (logx; — logx)

for every X, ..., Xn € [A B].
As

1 2
o ZJ_ _, (logx; —logxi)
represents the variance of the random variable whose distributionis

logx: logxs ... logxk
1/n 1/n .. 1/n ’

Theorem 5.1 reveals the probabilistic character of the AM — GM Inequality. Using
the technique of approximating the integrable functions by step functions, one can
immediately derive from Theorem 5.1 the following more general result:

THEOREM 5.2. Let (Q, Z, P) be a probability space and let X be a random
variable on this space, taking values in the interyal B], where0 < A < B. Then

M(X) — eMlogX)

<
AS D?(log X)
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